quarta-feira, 31 de outubro de 2018

 A Interpretação da Função de Onda de Schrödinger NO SISTEMA CATEGORIAL GRACELI.


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


onde  é a função de onda de Schrödinger ou campo escalar é o operador laplaciano, é o operador Hamiltonianoé um dado potencial e = h/2, sendo h a constante de Planck.
Depois da proposta dessa equação, procurou-se saber o significado de , pois, sendo a ES uma equação de onda, surgiu a seguinte questão. Ora, toda onda tem um suporte no qual ela se propaga: a onda sonora, é o ar; a onda elástica, é o meio material; e a onda eletromagnética, é o vácuo. Por outro lado, a sua solução geral envolve uma função complexa, ou seja:  =   exp [- (i/) E t], solução essa chamada de estacionária, porque a energia (E) é bem definida.
A primeira tentativa de dar uma interpretação para a  foi apresentada pelo próprio Schrödinger, ao interpretar os elétrons como pacotes de onda deslocando-se no espaço como se fossem partículas clássicas. Essa tentativa malogrou, pois logo ficou demonstrado que o “pacote” abria no decorre do tempo [ver qualquer texto sobre Mecânica Quântica, como, por exemplo: A. S. DavydovQuantum Mechanics (Pergamon Press, 1965)]. De outra feita, ainda Schrödingerpropôs que seu campo escalar poderia medir a espessura da camada formada pelo elétron “espraiado” ou “derramado”, sem, no entanto, obter êxito. A interpretação que hoje é aceita foi a formulada pelo físico alemão Max Born (1882-1970; PNF, 1954), também em 1926 (Zeitschrift für Physik 3738, p. 863; 803), que a considerou como uma amplitude de probabilidade. Vejamos como ele chegou a essa interpretação.
Nessa época, Born discutiu sua ideia com um jovem físico norte-americano Julius Robert Oppenheimer (1904-1967), explicando-lhe que baseou sua hipótese nos fenômenos físicos de dispersão, pois, ao estudar a dispersão de elétrons (representado por uma onda deBroglieana) por um átomo, verificou que o número de elétrons difundidos poderia ser calculado por intermédio de uma certa expressão quadrática, construída a partir da amplitude da onda esférica secundária, onda essa gerada pelo átomo espalhador do feixe eletrônico incidente. Hoje, essa expressão quadrática -  = - é denominada de probabilidade de encontrar o elétron em uma posição () estacionária. É oportuno destacar que Born e Oppenheimer, em 1927 (Annalender Physik 84, p. 457), desenvolveram o célebre Método de Born-Oppenheimer para estudar, quanticamente, os espectros eletrônico, vibracional e rotacional das moléculas.                    
A essa interpretação de Born sobrepôs-se uma outra relevante questão. Será sempre possível observar uma grandeza física? A resposta a essa pergunta foi dada pelo físico alemão Werner Karl Heisenberg (1901-1976; PNF, 1932), ao apresentar, em 1927 (Zeitschrift für Physik 43, p. 172), o seu famoso Princípio da IncertezaÉ impossível obter exatamente os valores simultâneos de duas variáveis, a não ser dentro de um limite mínimo de exatidão. Para o caso em que essas duas variáveis sejam (px) (componente do momento linear na direção x) e essa posição (x), aquele princípio apresenta a seguinte forma: <x2> <p2x> = (1/4) , com < > significando o valor médio.     
                   É interessante ressaltar que a interpretação probabilística de Born e o Princípio da Incerteza de Heisenberg, levaram à interpretação da Mecânica Quântica pela Escola de Copenhague, sob a liderança do físico dinamarquês Niels Henrik David Bohr (1885-1962; PNF, 1922). Tal interpretação – a famosa Interpretação de Copenhague – ainda hoje é polêmica no mundo científico, por ser considerada uma interpretação idealista (Davydov, op. cit.). Mais detalhes sobre essa polêmicaverGennaro AulettaFoundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results (World Scientific, 2001).


Sem comentários:

Enviar um comentário